
CHAPTER

THREE

CONCURRENCY

The last chapter described linguistic mechanisms for specifying concurrency.
However, naively written concurrent programs produce unexpected results. In
this chapter, we introduce the problem of resource con
ict, describe synchro-
nization mechanisms to resolve that con
ict, and present several problems that
illustrate synchronization and control issues.

3-1 RESOURCE CONFLICT

Unstructured concurrent computation produces unexpected results. For example,
even the simplest of programming rules, \after assigning a value to a variable,
that variable has that value (until that program makes some other assignment),"
is not true of concurrent systems. We illustrate this di�culty with a procedure
to add a deposit to \bank account" (variable) MyAccount:

procedure deposit (var amount: integer);

begin

MyAccount := MyAccount + amount;

end

Suppose we try to make two deposits at the same time, as might arise from
two simultaneous transactions in di�erent branches of the bank. That is, we
imagine that we have $1000 in MyAccount, and we execute

parbegin

deposit (100);

25

26 foundations

deposit (50)

parend

This is equivalent to executing, in parallel, the statements

parbegin

MyAccount := MyAccount + 100;

MyAccount := MyAccount + 50

parend

But neither of these assignment statements is itself primitive. Instead, incre-
menting an account is a series of operations such as

reg := MyAccount;

reg := reg + deposit;

MyAccount := reg

where reg is a register internal to the process (equivalent to a hardware register).
We assume that each concurrent statement in the parbegin has its own register.
That is, the parallel deposits expand into the primitives

Deposit 100 Deposit 50

reg1 := MyAccount; reg2 := MyAccount;

reg1 := reg1 + 100; reg2 := reg2 + 50;

MyAccount := reg1 MyAccount := reg2

The semantics of concurrent execution allows any possible permutation of
primitive elements. One legal execution path is

Deposit100 Deposit50

reg1 := MyAccount; �

MyAccount=1000 and reg1=1000 �

reg1 := reg1 + 100; �

MyAccount=1000 and reg1=1100 �

� reg2 := MyAccount;

� MyAccount=1000 and reg2=1000

MyAccount := reg1 �

MyAccount=1100 and reg1=1100 �

� reg2 := reg2 + 50;

� MyAccount=1100 and reg2=1050

� MyAccount := reg2

� MyAccount=1050 and reg2=1050

Here the vertical axis represents the progression of time; we see the interleaving
of concurrent primitives in the alternation of the statements. This execution

concurrency 27

path shows that our program intended to deposit $150, but the value of the
account has increased by only $50. The problem is that the bank account has
been improperly shared. Each deposit function needs exclusive control of the
bank account long enough to complete its transaction. Our program does not
ensure this mutual exclusion.

In general, a resource in a computer system is something needed to com-
plete a task. Resources can be physical objects, such as processors or pe-
ripherals, or software objects, such as memory locations, bu�ers, or �les. Re-
sources are shared, in that di�erent concurrent activities can use them at dif-
ferent times, but resources are also private, in that there is an upper bound
on the number of processes that can use a particular resource simultane-
ously. Often this bound is only a single process. For example, at some point
many di�erent processes may want to change the resource MyAccount. How-
ever, they should change it sequentially, one at a time. A concurrent activ-
ity is in the critical region of a resource when it is modifying or examining
that resource. Thus, each of our processes is in a critical region of MyAccount

when it executes the statement MyAccount := MyAccount + Deposit. The prob-
lem of preventing processes from executing simultaneously in critical regions
over the same resource is the mutual exclusion problem. In general, processes
that order their activities to communicate and not interfere with each other
are synchronized. Synchronization includes aspects of cooperation as well as
of serialized access to shared resources. Mutual exclusion is thus one facet
of synchronization.

A process that is prevented from entering a critical region because another
process is already in its critical region is blocked. If a set of processes are mutually
blocked, that set is deadlocked. In a deadlocked set, no process can make further
progress without external intervention. This occurs when several processes each
need a resource to complete their tasks and the instances of that resource have
been divided so as to preclude any process from getting enough to �nish. For
example, a system may have two tape drives, drivea and driveb. Both process1 and
process2 require two drives (perhaps to copy tapes); process1 and process2 run
concurrently. We imagine them to have the program schema shown in Figure 3-1.
At statement (3), process1 is blocked; it needs process2 to release driveb before
it can continue. Similarly, process2 is blocked at statement (4) because process1
has possession of drivea. The system halts, deadlocked.

Deadlock implies that all processes in a set are unable to accomplish useful
work. A particular process starves if it is stuck, even though other processes con-
tinue to progress.We illustrate starvation by modifying our tape drive example to
three processes and only a single drive. If after using the drive, process1 \passes"
it to process2 and process2 back to process1, they can keep it to themselves,
starving process3. In reality, starvation is more often the result of timing and
priority relationships of programs. For example, process3 may starve if process1
and process2 both have a large appetite for the tape drive and the system gives
higher priority to their requests.

28 foundations

Process1 Process2

(1) request drivea �

(2) � request driveb
(3) request driveb �

(4) � request drivea
the rest of process1's program the rest of process2's program

(5) release drivea �

(6) � release driveb
(7) release driveb �

(8) � release drivea

Figure 3-1 Deadlocking resource demands.

3-2 SYNCHRONIZATION MECHANISMS

In 1968, Dijkstra published a classic paper on synchronization, \Co-operating Se-
quential Processes" [Dijkstra 68]. In that paper, he developed a software solution
to the mutual exclusion problem. We follow his derivation in this section.

Dijkstra began by simplifying the general mutual exclusion problem to the
mutual exclusion of two processes, process1 and process2. Process1 and process2
cycle through a loop; in each cycle each enters a critical region. Thus, the general
schema for each process is

processi:

Li: critical region preparation;

critical region;

critical region cleanup;

concurrent region;

goto Li

The mutual exclusion problem is to ensure that only one process is ever executing
in its critical region at any time. The processes communicate by reading and
writing shared variables. We assume that reading and writing a variable are
each primitive (indivisible) operations.

A �rst attempt at a solution of this problem has the processes take turns
entering their critical regions. We have a variable, turn, that indicates which
process is to enter next. When a process wants to enter its critical region, it
waits until turn has its process identi�er.

var turn: integer;

begin

turn := 1;

concurrency 29

parbegin

process1:

begin

L1: if turn = 2 then goto L1;

critical region1
turn := 2;

concurrent region1
goto L1

end;

process2:

begin

L2: if turn = 1 then goto L2;

critical region2
turn := 1;

concurrent region2
goto L2

end

parend

end.

One way a blocked process can recognize an event is to execute a loop, looking
at each iteration for the event. Such a process is said to be busy waiting, or
spinning. Statements L1 and L2 implement busy waiting.

This solution ensures mutual exclusion|the two processes are never in their
critical regions simultaneously. However, we have achieved mutual exclusion at
the cost of synchronization|the processes are sure to enter critical regions in the
order 1, 2, 1, 2, 1, 2, : : : . This synchronization is unpleasant; it should be possi-
ble to achieve more concurrency than this lockstep allows. The synchronization
implied by this solution reduces the speed of each process to that of the slower
(and if generalized to several processes would reduce the speed of every process
to that of the slowest). To preclude such solutions, we impose another restriction
on acceptable programs: \Stopping one process in its concurrent region does not
lead to the other process blocking." We continue to assume that processes do
not stop either in critical regions or in the preparation or cleanup for critical
regions.

This leads us to the second solution. In this solution, we give each process a

ag to show that it is in its critical region. To enter its critical region, a process
checks if the other process is
ying its
ag, and, if not, raises its own and enters
its critical region. The program to implement this algorithm is as follows:

var in cr1, in cr2: boolean;

begin

in cr1 := false;

in cr2 := false;

30 foundations

parbegin

process1:

begin

L1: if in cr2 then goto L1;

in cr1 := true;

critical region1
in cr1 := false;

concurrent region1
goto L1

end;

process2:

begin

L2: if in cr1 then goto L2;

in cr2 := true;

critical region2
in cr2 := false;

concurrent region2
goto L2

end;

parend

end.

This solution avoids the pitfall of synchronization. However, it does have
a
aw|it fails to ensure mutual exclusion. Each process can �nd the other's

ag lowered, raise its own, and enter its critical region. More speci�cally, the
sequence

Process1 Process2

if in cr2 then : : : �

� if in cr1 then : : :

in cr1 := true �

� in cr2 := true

critical region1 �

� critical region2

�nds both processes simultaneously executing their critical regions.

Reversing the acts of checking the other process's
ag and raising one's own
ensures mutual exclusion. This gives us the following program:

var in cr1, in cr2: boolean;

begin

in cr1 := false;

in cr2 := false;

concurrency 31

parbegin

process1:

begin

L1: in cr1 := true;

BW1: if in cr2 then goto BW1;

critical region1
in cr1 := false;

concurrent region1
goto L1

end;

process2:

begin

L2: in cr2 := true;

BW2: if in cr1 then goto BW2;

critical region2
in cr2 := false;

concurrent region2
goto L2

end;

parend

end.

This solution is safe. A process about to enter its critical region knows:
(1) The other process's
ag is down. Hence that process is not near its critical
region. (2) Its own
ag is
ying. Hence the other process will not enter its criti-
cal region. Unfortunately, this program is susceptible to deadlock. Each process
raises its
ag and then loops, waiting for the other to lower its
ag. Temporally,
this is

Process1 Process2

in cr1 := true �

� in cr2 := true

BW1: if in cr2 then goto BW1 �

� BW2: if in cr1 then goto BW2

BW1: if in cr2 then goto BW1 �

� BW2: if in cr1 then goto BW2

BW1: if in cr2 then goto BW1 �

� BW2: if in cr1 then goto BW2
...

...

The problem is that the processes have been too stubborn about keeping their

ags
ying. If a process cannot enter its critical region, it needs to back o�,
lowering its
ag before trying again. This brings us to our penultimate program:

32 foundations

var in cr1, in cr2: boolean;

begin

in cr1 := false;

in cr2 := false;

parbegin

process1:

begin

L1: in cr1 := true;

if in cr2 then

begin

in cr1 := false;

goto L1

end;

critical region1
in cr1 := false;

concurrent region1
goto L1

end;

process2:

begin

L2: in cr2 := true;

if in cr1 then

begin

in cr2 := false;

goto L2;

end;

critical region2
in cr2 := false;

concurrent region2
goto L2

end;

parend

end.

This solution almost works. By lowering its
ag, each process gives the other
a chance to succeed. However, it is possible that the two processes might follow
the sequence

Process1 Process2

in cr1 := true �

� in cr2 := true

if in cr2 then �

� if in cr1 then

in cr1 := false �

concurrency 33

� in cr2 := false

goto L1 �

� goto L2

in cr1 := true �

� in cr2 := true

if in cr2 then �

� if in cr1 then

in cr1 := false �

� in cr2 := false

goto L1 �

� goto L2
...

...

Is such synchronization possible? In systems composed of identical elements,
it may even be likely, so we must reject this solution too. This situation, in which
a system's processes are not blocked but still fail to progress, is called livelock.

Given these constraints, a correct solution to the mutual exclusion problem is
surprisingly di�cult to program. Thomas Dekker proposed the �rst such solution.
His solution combines elements of the turn variable of the �rst program with
the
ags of the later programs. The key idea is to detect potential \after you"
situations (when a process has its own
ag raised, and sees the other process's

ag) and to resolve them by giving priority to the process marked by the turn
variable. After each critical region, a process sets the turn variable to the identity
of the other process, giving the other priority if there is a con
ict the next time
around. Unlike the last solution, the processes ignore this priority if there is no
con
ict.

var in cr1, in cr2: boolean;

turn: integer;

begin

turn := 1;

in cr1 := false;

in cr2 := false;

parbegin

process1:

begin

L1: in cr1 := true;

PW1: if in cr2 then

begin

if turn = 1 then goto PW1;

in cr1 := false;

BW1: if turn = 2 then goto BW1;

goto L1

end;

34 foundations

critical region1
turn := 2; - - give the other process priority

in cr1 := false;

concurrent region1
goto L1

end;

process2:

begin

L2: in cr2 := true;

PW2: if in cr1 then

begin

if turn = 2 then goto PW2;

in cr2 := false;

BW2: if turn = 1 then goto BW2;

goto L2;

end;

critical region2
turn := 1;

in cr2 := false;

concurrent region2
goto L2

keywordend;

parend

end.

This progression ought to leave the reader with some feeling for the addi-
tional complications inherent in programming concurrent systems. We must not
only ensure that a particular segment of program is correct, but also that no
concurrent activity can jeopardize it. Dekker's solution solves the problem, but
the solution itself is complicated and unappealing. Because it is too cumbersome
for practical purposes, the search began for alternative mechanisms.*

One reason the problem is di�cult is that the actions of reading and writing
shared storage are not indivisible primitives. This led to the idea of an instruction
that would both read and write storage as a single action. The TS (test-and-
set) operation on the IBM/360 was an early implemention of this idea. The
instruction both stored a value in a memory location and returned the previous
value from that location. To processes running on the machine, the instruction
appeared indivisible.

Solutions using test-and-set have the disadvantage of requiring a process
waiting for a resource to loop, checking to see when the resource is free. Instead,
it would be better to have a primitive that would combine the precise intention

* Peterson has demonstrated a simpler solution of the mutual exclusion problem.We present

his algorithm in Chapter 6.

concurrency 35

of both protecting a resource and waking a waiting process. In \Co-operating
Sequential Processes," Dijkstra introduced the semaphore for just this purpose
[Dijkstra 68]. A semaphore is an (abstract) object with two operations, one to
claim the resource associated with the semaphore and the other to release it.
The claiming operation on a semaphore s is P; the releasing operation is V. If
the semaphore claimed is busy, the requesting process is blocked until it is free.
When another process executes the V on that semaphore, a blocked process is
released and allowed access to the resource.

Semaphores are typically implemented as nonnegative integers. Executing
V(s) increments s; executing P(s) tries to decrement s. If s is positive, this action
succeeds; if it is zero, then P waits until it is positive. Instead of a busy wait, the
blocked process can be added to a set of processes waiting on that semaphore.
These incrementing and decrementing operations must be indivisible. The initial
value of s is the number of processes that can simultaneously access the resource.
A binary semaphore allows only one process to control the resource at any time.
A semaphore variable whose initial value is one acts as a binary semaphore. A
program for mutual exclusion using semaphores is as follows:

var mutex: semaphore;

begin

mutex := 1;

parbegin

process1:

begin

L1: P(mutex);

critical region1
V(mutex);

concurrent region1
goto L1

end;

process2:

begin

L2: P(mutex);

critical region2
V(mutex);

concurrent region2
goto L2

end;

parend

end.

This solution has the additional advantage of being able to enforce the mutual
exclusion of any number of processes without modi�cation.

Semaphores were a conceptual advance over setting and testing shared mem-
ory but failed to provide additional structuring to exclusion and sharing. Other

36 foundations

proposed primitives for resource control include locks [Dennis 66] and monitors
[Hoare 74]. Locks abstract the simple idea of a resource \lock" with two oper-
ations, lock and unlock. A process trying to lock an already locked lock spins
until it is unlocked. Monitors combine both data abstraction and mutual exclu-
sion into a single sharable object; access to that object is not only serialized but
is also abstract. In Section 13-1, we discuss Concurrent Pascal, a language that
uses monitors.

Synchronization mechanisms like semaphores embody the notion of indivisi-
ble, primitive actions. Often an action should seem to be indivisible, but is more
complex than a single primitive. An atomic action is a compound computation
that is distributed over time or location, but cannot be externally decomposed
into more primitive actions. Following Leslie Lamport, we use angle brackets
(��) to delimit atomic actions [Lamport 80]. Thus, the notation

�A; B; C�

indicates that A, B, and C are to be executed sequentially and atomically.

3-3 ILLUSTRATIVE EXAMPLES

Earlier in this chapter we discussed the issues involved in concurrent access to a
bank account variable. We did not select this example as an illustration of what
to do if you ever �nd yourself programming for Chase Manhattan. Instead, the
concept of a shared resource with state that can be tested and set is a common
theme in programming concurrent systems. The metaphor of a bank account is
just an instance of this theme.

Several such \metaphorical" examples have been proposed that summarize
particular problems associated with resource control and concurrency.We use �ve
of these as illustrative examples in Parts 2, 3, and 4. We have already described
two of them, shared storage and semaphores. We call the shared storage problem
the register problem. Registers have two operations, one that stores a value in the
register and another that returns the last value stored. Of course, semaphores also
have two operations, P and V. A process executing P on a depleted semaphore
is blocked or refused until another process replenishes that semaphore with a V.

Our three other standard examples are the readers-writers, dining philoso-
phers, and producer-consumer bu�er problems.

Readers and writers Courtois, Heymans, and Parnas described the readers-
writers problem in 1971 [Courtois 71]. This problem illustrates a variety of mutual
exclusion that is more complex than simple semaphorelike mutual exclusion but
nevertheless realistic. The readers-writers problem posits two classes of users of
a resource, readers and writers. Readers read the resource and writers write it.
Readers can share access to the resource. That is, several readers can be reading

concurrency 37

the resource simultaneously. Writers require exclusive control of the resource.
When a writer is writing, no other process can be reading or writing.

The multiple-readers/single-writer pattern of resource control corresponds to
a desirable way of accessing shared databases. This pattern allows many processes
to be simultaneously reading the database, but restricts database updates to a
single process at a time. Many database update transactions involve making
several changes in the database. A process that reads the database during an
update might obtain an inconsistent view of the data.*

Solutions of the readers-writers problem should maximize concurrent access
to the database without starving either readers or writers. Solutions usually allow
readers to read until a writer wants to write. Additional readers are then blocked.
When the currently reading readers have �nished, the system allows the writer
to write and then unblocks the waiting readers. The process is then repeated.

Dining philosophers The bank account example illustrated mutual exclusion
of two processes and a single resource. Of course, computing systems can have
many processes and many resources, with many di�erent patterns of resource
exclusion. The readers-writers problem is an example of one such pattern. Dijk-
stra's dining philosophers problem describes another, more fanciful, exclusion
regime [Dijkstra 72a]. Five philosophers live an existence centered around two
activities: thinking and eating. In a room is a circular table and in the middle of
the table, a serving platter of spaghetti. Each philosopher has her own place
at the table; at that place is a plate. A fork lies between each pair of plates.
A philosopher's life is a simple one. She thinks. Becoming hungry, she enters
the room and takes her place at the table. Since eating spaghetti requires two
forks, she picks up �rst one fork and then the other. She then �lls her plate
with spaghetti and eats. Satiated, she returns the forks to their places, leaves
the room, and resumes thinking, eventually repeating the cycle. Figure 3-2 shows
the dining arrangement of the philosophers.

The reader should understand that these philosophers are stubborn charac-
ters. Once having become hungry, entered the room, and acquired a fork, they do
not relinquish that fork until after they have eaten. And, of course, self-respecting
philosophers would rather starve than eat with only one fork.

Given these rules, all �ve philosophers can become hungry at roughly the
same time, enter the room, sit, pick up one fork (say, their left forks), and wait,
interminably, for the other fork to become free. At this point, the philosophers
are deadlocked and (literally) starve.

A solution to the dining philosophers problem is a program that models this
situation. The philosophers are usually modeled as processes. Processes or data
structures may be used to model the behavior of the forks and the dining room.
Each philosopher should have virtually the same program, di�ering only in the

* We discuss control algorithms for database systems in Chapter 17.

38 foundations

Figure 3-2 The dining philosophers.

philosopher's seat and fork assignments. A deadlock-free solution to the dining
philosophers problem is one in which some philosopher eventually eats|that
is, some work gets done. A starvation-free solution is one in which no philoso-
pher starves if she waits long enough to obtain forks. Of course, a deadlock-free
solution is a more complex program than the simple modeling problem and a
starvation-free solution is still more complex.*

The dining philosophers problem re
ects the common need of real systems
for multiple resources to accomplish their tasks. If �ve programs share �ve tape
drives and each needs two drives, then an organization that gives one tape drive
to each program can starve or deadlock the computer system as easily as poor
dining room management can starve philosophers.

Bu�ers Often two processes are coupled in a \producer-consumer" relationship:
the producer process generates data that is used by the consumer process. For

* Variations on the dining philosopher's problem include generalizing the number of philoso-

phers, changing the possible actions of a hungry, forkless philosopher, and, more whimsically,

substituting chopsticks and Chinese food for forks and spaghetti.

concurrency 39

example, a producer process might generate output to be printed, while a line
printer (consumer) process might take that output and drive the printer to write
it.

Clearly, two such processes can be organized procedurally. When the pro-
ducer has a ready datum it can call the consumer, as a procedure, to handle it.
The consumer can return an acknowledgment to the producer when it �nishes
processing. (Or, conversely, the consumer could call the producer for the next
data item.) However, this architecture leaves the producer idle while the con-
sumer computes and the consumer idle while the producer computes. That is,
this organization yields no concurrency.

We can obtain concurrency by using an (unbounded) bu�er. When the pro-
ducer has a ready datum, it sends it to the bu�er. When the consumer wants
the next datum, it asks the bu�er for it. If the bu�er is empty, the bu�er either
delays the consumer or informs it of the lack of data. The producer is never
slowed; it can always be generating data and adding it to the bu�er. The bu�er
acts as a queue of unconsumed data.

The producer-consumer bu�er problem can be generalized to multiple pro-
ducers and consumers. For example, a system may have several producer proc-
esses that intermittently create output for printing and several printer processes
capable of consuming that output and creating listings. Producers do not care
which printer prints their output. A bu�er between the producers and the con-
sumers allows not only the concurrency of data generation and printing but also
the delegation of printing tasks independent of printer identity.

We have described an unbounded producer-consumer bu�er, where produc-
ers never need to be concerned about the availability of bu�er space for their
output. The bounded producer-consumer problem assumes that the bu�er can
hold only a �xed number of data items. Solving the bounded bu�er problem re-
quires not only an appropriate response to a consumer when the bu�er is empty
but also an appropriate response to a producer when the bu�er is full. A pro-
ducer that tries to insert an element in a full bu�er must be either rejected or
delayed until space becomes available.

PROBLEMS

3-1 Generalize Dekker's solution to the mutual exclusion problem from 2 processes to n

processes.

3-2 Dekker's solution precludes deadlock. Does it also preclude starvation?

3-3 In Dekker's solution, what happens to the system if a process fails while executing in

its critical region? What happens if it fails while executing the code for the critical region

preparation or cleanup?

3-4 Program mutual exclusion using the test-and-set operation.

3-5 Program the readers-writers problem using semaphores.

3-6 Program the dining philosophers problem using semaphores.

40 foundations

3-7 Program a bounded producer-consumer bu�er using semaphores.

REFERENCES

[Courtois 71] Courtois, P. J., F. Heymans, and D. L. Parnas, \Concurrent Control with

`Readers' and `Writers,' " CACM, vol. 14, no. 10 (October 1971), pp. 667{668. Courtois

et al. describe and solve the readers-writers problem. Their solution uses semaphores.

[Dennis 66] Dennis, J. B., and E. C. Van Horn, \Programming Semantics for Multipro-

grammed Computations," CACM, vol. 9, no. 3 (March 1966), pp. 143{155. Dennis and

Van Horn propose the mutual exclusion mechanism of explicit primitives that lock and

unlock a variable.

[Dijkstra 68] Dijkstra, E. W., \Co-operating Sequential Processes," in F. Genuys (ed.), Pro-

gramming Languages: NATO Advanced Study Institute, Academic Press, London (1968),

pp. 43{112. This paper is an excellent exposition on the di�culties of concurrent pro-

gramming. Starting from simple ideas about concurrency, Dijkstra develops the ideas of

Dekker's mutual exclusion algorithm and semaphores. He then generalizes the mutual

exclusion problem to multiple processes.

[Dijkstra 72a] Dijkstra, E. W., \Hierarchical Ordering of Sequential Processes," in C.A.R.

Hoare, and R. H. Perrott (eds.), Operating Systems Techniques, Academic Press, New

York (1972), pp. 72{93. This paper is an introduction to mutual exclusion, including a

description of the dining philosophers problem.

[Hoare 74] Hoare, C.A.R., \Monitors: An Operating System Structuring Concept," CACM,

vol. 17, no. 10 (October 1974), pp. 549{557. Hoare describes the monitor concept and

argues for its value in programming operating systems. We discuss Concurrent Pascal, a

language based on a simpler type of monitor, in Section 13-1.

[Lamport 80] Lamport, L., \The `Hoare Logic' of Concurrent Programs," Acta Informa.,

vol. 14, no. 1 (1980), pp. 21{37. Lamport introduces \��" pairs to indicate atomic actions.

[Shaw 74] Shaw, A. C., The Logical Design of Operating Systems, Prentice-Hall, Englewood

Cli�s, New Jersey (1974). Shaw develops the issues of concurrency and mutual exclusion

within the context of building operating systems. Many of the issues of operating system

development apply to coordinated computing.

[Stark 82] Stark, E. W., \Semaphore Primitives and Starvation-Free Mutual Exclusion,"

JACM, vol. 29, no. 4 (October 1982), pp. 1049{1072. Stark identi�es three di�erent im-

plementation techniques for semaphores: (1) queueing processes blocked on a semaphore,

(2) keeping processes blocked on a semaphore in a \blocked set," selecting the next proc-

ess to be released on a V operation from that set, and (3) letting blocked processes spin,

with the �rst to notice that the semaphore has been released being the one that claims it.

Stark shows that the �rst two techniques are more powerful than the third, in that \good"

starvation-free mutual exclusion can only be programmed with blocked sets or queues.

